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The Dirac equation with a δ-potential
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Abstract. An elementary treatment of the Dirac equation in the presence of a three-dimensional
spherically symmetric δ(r − r0)-potential is presented. We show how to handle the matching
conditions in configuration space, and discuss the occurrence of supercritical effects.

The problem of solving the Dirac equation in the presence of a δ-potential represents a
curious and non-simple situation, in contrast with the equivalent problem in non-relativistic
quantum mechanics, i.e. the Schrödinger equation, which is discussed in any course on
quantum mechanics. This is basically related to the fact that, being the Dirac equation of
first order, a singular potential, like the δ one, induces discontinuities at the level of the
wavefunctions themselves instead of the usual discontinuities that appear in the first derivative
in the Schrödinger scenario.

This puzzling situation has been discussed previously in the literature by many authors.
Rigorous construction of self-adjoint extensions for the Dirac operator, allowing the handling
of matching conditions at the support of the δ-potential, were discussed in [1]. Using their
results, a discussion of this problem was presented in [2]. However, we have realized that
the proposed solution corresponds to a different self-adjoint extension, associated also with a
different singular potential.

At present, a simple and elementary discussion, without the necessity of invoking
sophisticated mathematical constructions, is still not available in the literature. In this paper
we want to overcome this situation, showing in elementary terms how to handle the problem
in configuration space. Other authors have shown how to handle the problem in momentum
space [3]. Using our results, we discuss the occurrence of supercritical effects, i.e. the
possibility that the ground state starts to dive into the depths of the Dirac sea, implying positron
emission [4].

The Dirac equation with an external potential can be written as

Hψ = Eψ (1)

where

H = cα̂ · p̂ + β̂mc2 + V (r) (2)

where p̂ = −ih̄∇. Here α̂ and β̂ are the usual 4×4 Dirac matrices andψ is the four-component
Dirac spinor.

In what follows we will focus on the attractive spherically symmetric (vector) potential
given by

V (r) = −aδ(r − r0) (3)
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with a > 0.
It is convenient to recall some general properties of the solution of the Dirac equation in

a central potential. For more details the reader may consult the book by Greiner et al [5] and
references therein. In this case, the complete set of commuting operators is given by H , J 2,
J3 and K , where �J is the total angular momentum (i.e. �J = �L + �S), and �K is defined by

K = β( �� · �L + h̄1I). (4)

In this expression �� =
( �σ 0

0 �σ
)

where the σ are the Pauli matrices. In terms of ��,

�S = h̄
2
��. On the other hand �L is the orbital angular momentum. The eigenvalues of the

operator K are given by

Kψ = −κh̄ψ = ±(j + 1
2 )h̄ψ (5)

whereψ =
(
ψu
ψl

)
is the four-component spinor solution of the Dirac equation written in terms

of the two-component upper and lower ψu and ψl. In the equation (5), j = 0, 1
2 , 1,

3
2 , . . . are

the usual eigenvalues of J 2 according to

J 2ψ = j (j + 1)h̄2ψ. (6)

We note that the four-component Dirac spinor is not an eigenfunction of L2. However,
the upper and lower components, taken separately, satisfy

L2ψu(x) = [j (j + 1)h̄2 + κh̄2 + 1
4 h̄

2]ψu(x) ≡ lu(lu + 1)h̄2ψu(x) (7a)

and

L2ψl(x) = [j (j + 1)h̄2 − κh̄2 + 1
4 h̄

2]ψl(x) ≡ ll(ll + 1)h̄2ψl(x). (7b)

Note that the orbital parities of the upper and lower components have opposite signs. It is
convenient to parametrize the four-component spinor by separating the radial and angular
dependence according to

� =
[
ψu
ψl

]
=
[
g(r) jlum(θ, φ)

if (r) jllm(θ, φ)

]
(8)

where

 jlm(θ, φ) =
∑
m′,ms

(
lsj |m′msm

)
Ylm′(θ, φ)χ 1

2ms
(9)

are the spherical spinors that carry out the angular part. Here we have coupled, through
appropriate Clebsh–Gordan coefficients, the scalar spherical harmonics Ylm′(θ, φ) with the
eigenfunctions of the spin given by the two-component spinors χ 1

2ms
.

For this discussion we do not need the explicit form of the angular part. If we now consider
the Dirac equation for a spinor parametrized in this way, it is not difficult to show that the radial
components satisfy the following set of coupled differential equations:

h̄c

(
dF

dr
− κ F

r

)
= −(E − V (r)−mc2)G(r) (10a)

and

h̄c

(
dG

dr
+ κ
G

r

)
= (E − V (r) +mc2)F (r) (10b)

where G(r) ≡ rg(r) and F(r) ≡ rf (r). Because of the linear discontinuity of the
spinor function, given by the delta potential, we need to fix the boundary conditions in the
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neighbourhood of the shell r = r0. If we multiply equation (10a) by F , (10b) by G and then
sum both expressions to remove the singular delta function, we obtain

F ′F +G′G = 2mcFG

h̄
+ κ
(F 2 −G2)

rh̄c
. (11)

In the previous expression, the primes denote radial derivatives. By integrating between
r0 − ε and r0 + ε and taking then the limit when ε → 0 we obtain

lim
ε→0

∫ r0+ε

r0−ε
(F ′F +G′G) dr = lim

ε→0

∫ r0+ε

r0−ε

(
2mcFG

h̄
+ κ

(
F 2 −G2

)
rh̄c

)
dr. (12)

Assuming that the discontinuities of these functions are well behaved we find that

lim
ε→0
(F 2 +G2)|r0+ε

r0−ε = 0. (13)

We may consider F and G as the real and imaginary parts of a function in C. In this
context, equation (13) expresses the fact that the absolute value of this function is constant
when crossing the support of the δ-potential. This is in agreement with the condition established
by Dittrich et al (see equation (3.5a) in [1]; see also the remarks after equation (21) in [2]). In
fact, the absolute value of this function is continuous for all r .

If we set F+,− ≡ F(r0 ± ε) and G+,− ≡ G(r0 ± ε), (13) becomes

F 2
+ +G2

+ = F 2
− +G2

−. (14)

Now, as a second step, we multiply the differential equations by G and F , respectively,
and subtract them to obtain

F ′G− FG′ = − (E −mc2)

h̄c
G2 +

(E +mc2)

h̄c
F 2 + 2

κGF

h̄cr
− a

h̄c
δ(r − r0)(F 2 +G2). (15)

Dividing by F 2 + G2, which is continuous for all values of r , we can integrate in the
neighbourhood of the shell radius

lim
ε→0

∫ r0+ε

r0−ε

F ′G− FG′

(F 2 +G2)
dr = − a

h̄c
lim
ε→0

∫ r0+ε

r0−ε
δ(r − r0) dr. (16)

By using

F ′G− FG′

(F 2 +G2)
= 1

(F/G)2 + 1

d

dr

(
F

G

)
(17)

and since
∫

1
1+h2(x)

d[h(x)] = arctan(h(x)) we have

lim
ε→0

(
arctan

F(r)

G(r)

)∣∣∣∣
r0+ε

r0−ε
= − a

h̄c
. (18)

In this way, our second boundary condition can be written as

arctan
F+

G+
− arctan

F−
G−

= − a

h̄c
. (19)

Expressing the coupling constant in units of h̄c, we define the dimensionless parameter
α ≡ tan(a/h̄c). Our second boundary condition can then be expressed as

F+

G+
= (F−/G−)− α

1 + α(F−/G−)
. (20)

Except for an arbitrary phase, the last expression can be written as a matricial relation
between the radial functions on both sides of the potential,[

F+

G+

]
=
[

cos(a/h̄c) − sin(a/h̄c)
sin(a/h̄c) cos(a/h̄c)

] [
F−
G−

]
≡ A

[
F−
G−

]
. (21)
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This matrixA is unitary (actually orthogonal), detA = 1, and contains the information for
finding the eigenvalue equation for the bound states. Returning to our complex valued function
with real and imaginary parts given by F andG, respectively, it is interesting to remark that δ
manifests itself through a change of phase of this function, given by tan(a/h̄c).

For the solutions of equations (10a) and (10b) corresponding to the free case, we may
separate the space into two regions:
Region I, r < r0,

GI(r) = AIr
( π

2kr

)1/2
Ilκ+1/2(kr) (22)

FI(r) = AI
kh̄c

E +mc2
r
( π

2kr

)1/2
Il−κ+1/2(kr). (23)

Region II, r > r0,

GII(r) = AII r
( π

2kr

)1/2
Klκ+1/2(kr) (24)

FII(r) = −AII kh̄c

E +mc2
r
( π

2kr

)1/2
Kl−κ+1/2(kr). (25)

The relations we are looking for reduce to

FI

GI
= kh̄c

E +mc2

Il−κ+1/2(kr)

Ilκ+1/2(kr)
(26)

FII

GII
= − kh̄c

E +mc2

Kl−κ+1/2(kr)

Klκ+1/2(kr)
. (27)

Taking into account that for the ground state, for j = l + s = 1
2 , we have lκ = 0 and

l−κ = 1, we can write

I1/2(kr) =
√

2

πkr
sinh(kr) (28)

I3/2(kr) =
√

2

πkr

(
cosh (kr)− sinh(kr)

kr

)
(29)

K1/2(kr) =
√
π

2kr
e−kr (30)

K3/2(kr) =
√
π

2kr
e−kr

(
1 +

1

kr

)
. (31)

In these equations k denotes a wavenumber, h̄ck = √
m2c4 − E2. In order to find

the eigenvalues of the Hamiltonian, we evaluate (26) and (27) of r0 and use the boundary
condition (20). In this way we are led to solve the following transcendental equation:

kh̄c

E +mc2

(
1 +

1

kr0

)
+ α

(
kh̄c

E +mc2

)2 (
1 +

1

kr0

)(
1 − tanh(kr0)

tanh(kr0)

)

= kh̄c

E +mc2

(
1 − tanh(kr0)

tanh(kr0)

)
− α. (32)

Without solving explicitly this equation, we can analyse the behaviour of the ground state
energy E, as a function of the parameter α = tan(a/h̄c), related to the coupling constant a.
We start by introducing the following dimensionless variables:

ε ≡ E

mc2
(33a)
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ρ ≡ r0

h̄/mc
(33b)

s0 ≡ ρ
√

1 − ε2 (33c)

u0 ≡ ρ(1 + ε) (33d)

g0 ≡ tanh(kr0)

kr0
. (33e)

In terms of these variables, our eigenvalue equation (32) can be written as

α = s0u0(1 + g0s0)

u0
2 − (s0 + 1)s0(1 − g0)

. (34)

For a fixed value of the radius of the δ-shell, r0 (with r0 �= 0), we are interested
in determining the existence of the ground state energy in the interval (−mc2,mc2) (i.e.
−1 � ε � 1). The existence of an ε in this range will depend on the values of the coupling
constant a through the dimensionless parameter α.

Since h̄ck = √
m2c4 − E2 = mc2

√
1 − ε2, we obtain from (33e) that

lim
ε→±1

g0 = 1. (35)

On the other hand, using (33e) we obtain

lim
ε→−1

1 − g0

u0
= 2

3
ρ. (36)

Using the limits (35) and (36) in equation (34) we see that as E approaches the free state
(i.e. ε → 1−), α → 0+, which agrees with the fact that the bound states disappears for a
vanishing potential.

0.0 1.0 2.0 3.0
A

−1.0

−0.5

0.0

0.5

1.0

ε

ρ=0.5
ρ=1.0
ρ=2.0
ρ=10.0

Figure 1. In figure 1, we show the behaviour of the ground state energy ε = E/mc2, for different
values of the size ρ = r0/(

h̄
mc
) of the delta-shell as a function of the dimensionless coupling

constant A = a/(h̄c): ρ = 0.5 (dotted curve), ρ = 1.0 (solid curve), ρ = 2.0 (dashed curve),
ρ = 10.0 (dot–dashed curve).
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Proceeding as before, with ε → −1+ (i.e. as the energy approaches the Dirac sea), we
infer from equation (34) that α approaches the value −3/2ρ, which gives

tan
(acrit

h̄c

)
= − 3

2ρ
(37)

where acrit , the minimum positive solution of (37), is the value of the coupling constant for
which the ground state energy sinks into the Dirac sea (e.g. for ρ = 1, acrit = 2.19h̄c).

The numerical solution of equation (34) for the dimensionless ground state energy ε as a
function of ρ and a is plotted in figure 1. Notice that for a fixed value of ρ, ε is a decreasing
function of a. For all finite values of ρ there are supercritical effects. Clearly, the value of
acrit for which ε sinks into the Dirac sea increases with ρ. However, the limit r0 → 0 is not
well defined in (34) and thus we cannot find solutions for bound states in this limit. We would
like to remark that a general theorem by Svendsen [6, 7], tells us that supercritical effects are
absent in this limit.
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